New and old cancer drugs – not just the same old cardiotoxicity!

It is now known that there are two main types of heart failure associated with the use of chemotherapeutic agents, Type I which is irreversible and Type II which is reversible; in some settings, a continuum exists between these two types. In Type II heart failure, temporary dysfunction may result from myocyte stunning, whereas in Type I heart failure cell death results in permanent damage. The clinical presentation of Type I and II cardiotoxicity is identical and only time hints at the contributions of the type of injury in any given case.

Type I heart failure – mostly an anthracycline phenomenon

Type I heart failure is mostly an anthracycline phenomenon. While anthracyclines such as doxorubicin continue to play a prominent role in the treatment of breast cancer, lymphoma and leukaemia, cardiotoxicity associated with these agents can be a devastating and sometimes fatal event. There is a definite need to maintain the therapeutic benefits of these agents while minimising cardiotoxic risk. Unfortunately, the potential cardiac sequel of these agents is usually delayed and may be discovered decades after chemotherapy.

In Type I cardiotoxicity, cellular death occurs from the first administration of the chemotherapeutic agent and this insult may be a devastating and sometimes fatal event. There is a definite need to maintain the therapeutic benefits of these agents while minimising cardiotoxic risk. Unfortunately, the potential cardiac sequel of these agents is usually delayed and may be discovered decades after chemotherapy.

Chronic anthracycline-induced cardiotoxicity may result in heart failure and this may have a sub-acute onset, often occurring months after treatment. However, this can occur as early as weeks after treatment in severe forms and it is more likely to occur early when cardiac protection has not been utilised. Late-onset cardiotoxicity may take years to occur and is more frequently reported in children. It reflects the end stage of the damage that occurs at the time of exposure and this may be related to sequential stresses.

About Research Review

Research Review is an independent medical publishing organisation producing electronic publications in a wide variety of specialist areas.

A Research Review Speaker Series is a summary of a speaking engagement by a major local or international expert and allows it to be made available to a wider audience through the Research Review membership or physical distribution.

Research Review publications are intended for New Zealand medical professionals.

Subscribing to Research Review

To subscribe to Research Review publications go to www.researchreview.co.nz

Acute and chronic cardiotoxicity of anthracyclines

The cardiotoxicity associated with the use of anthracyclines appears to have two phases, acute and chronic. Acute cardiotoxicity associated with anthracyclines occurs days to weeks after therapy. Patients experiencing such an event may present with small ECG changes, vague chest pain assumed to be myopericarditis, and/or low-grade fever. Such patients tend to improve and their ejection fractions are usually normal. Previously, acute toxicity was not considered to be of major clinical importance. However, investigations by Cardinale and colleagues revealed that troponin I, a marker of cell death, is released at the time of exposure and this may be a devastating and sometimes fatal event. There is a definite need to maintain the therapeutic benefits of these agents while minimising cardiotoxic risk. Unfortunately, the potential cardiac sequel of these agents is usually delayed and may be discovered decades after chemotherapy.

In fact, they discovered that the troponin I release pattern after high-dose chemotherapy identifies patients who are at different levels of risk for cardiac events in the 3 years following exposure. It is clear that early toxicity may reflect damage seen months or years later.

Chronic anthracycline-induced cardiotoxicity may result in heart failure and this may have a sub-acute onset, often occurring months after treatment. However, this can occur as early as weeks after treatment in severe forms and it is more likely to occur early when cardiac protection has not been utilised. Late-onset cardiotoxicity may take years to occur and is more frequently reported in children. It reflects the end stage of the damage that occurs at the time of exposure and this may be related to sequential stresses.
Why the heart?
The heart has a relative lack of biochemical reserves to handle free radical burden; the myocardium lacks catalase and glutathione peroxidase is quickly depleted by doxorubicin. Furthermore, the myocardium has a low capacity for cell renewal, with possibly only a low percentage of cells renewed each year.

Clinical presentation and risk factors for cardiac damage
The clinical presentation of cardiac damage typically consists of congestive heart failure (CHF), shortness of breath, a reduction of functional capacity, resting tachycardia and a symptom complex misdiagnosed by oncologists, persistent exercise-induced tachycardia. Exercise-induced persistent tachycardia is, in fact, the earliest sign of cardiac damage. It is important that clinicians make the diagnosis of chemotherapy-induced cardiotoxicity as early as possible in order to intervene before significant irreversible damage occurs.

It became evident fairly shortly after the introduction of anthracyclines that not all patients develop cardiotoxicity at the same time, with some developing heart failure sooner after the initiation of therapy than others. Several risk factors for cardiotoxicity include cumulative drug dose, combination chemotherapy, prior or concomitant mediastinal radiotherapy, age (paediatric and elderly), and previous cardiac disease including hypertension and valvular disease.

Prevention/reduction of anthracycline cardiotoxicity
The initial goal in therapy was to mitigate the toxicity associated with anthracyclines. An obvious way was to reduce the total (cumulative) dose to ≤400 mg/m², but a more effective approach was to use a continuous infusion of the agent over 48-96 hours, thus reducing the peak plasma concentration of the drug compared with that achieved with a more rapid infusion. Another effective approach was the liposomal formulation of the agent. As too were cardiac protectors such as dexrazoxane and the use of less toxic anthracyclines such as epirubicin.

The mechanism of anthracycline-induced cardiotoxicity
Immediate and irreversible cardiac damage occurs acutely, with increased troponin T and structural abnormalities evident on cardiac biopsy. This immediate injury is followed by a period of compensation where hypertrophy, increased heart rate, slight heart enlargement and changes in the Starling curve result in maintenance of a grossly normal ejection fraction. However, these patients are still vulnerable, and in about 5% of patients who receive the highest dosages (>400 mg/m²) a failure to compensate adequately results in an abnormal resting ejection fraction. Such patients are extremely vulnerable to sequential stress, often suffering end-stage heart failure. Mann in the late 90s devised a general conceptual framework for explaining the pathogenesis of heart failure (see Figure 1).² In their model showing a single myocyte, damage is seen to occur after an index event, such as the use of anthracyclines and this produces an initial decline in the pumping capacity of the heart. In response to this, a number of compensatory mechanisms are activated in the short-term. These responses are able to restore cardiovascular function to a point where the patient may remain stable for long periods despite considerable cardiac damage.

Dr Ewer emphasises that it is thought that such injury occurs in all patients receiving the maximum tolerated dosages of anthracyclines and that compensatory changes are attempted in all of those patients, but that 5% of patients fail to compensate. He also says that if we monitor and treat such patients in a manner to reduce sequential stress, the mechanism leading to heart failure will move ahead more slowly. Furthermore, patients may remain stable for long periods despite considerable cardiac damage.

How do we look for subclinical damage?
Left ventricular ejection fraction (LVEF) is an imperfect marker of cardiotoxicity because any decrease in LVEF is assumed to be due to chemotherapy, but may in fact relate to other concomitant medications. In contrast, an unchanged LVEF is often equated to a lack of cardiotoxicity, but this may instead reflect adequate capacity for cardiac compensation. A decreased LVEF in association with other cardiac biomarkers may provide more convincing evidence of early damage. When a decreased LVEF is truly related to the drug, it indicates that a patient is no longer able to compensate and is a marker for advanced myocyte damage.

What is the evidence for early damage?
The relationship between the percentage of congestive heart failure (CHF) and cumulative doxorubicin dose first published by Von Hoff in the 1970s indicates a flat curve at cumulative doses up to 400 mg/m², but an acceleration in loss of function above this dosage.³ However, while compensation maintains LVEF at lower anthracycline doses, cardiac biopsy data

Figure 1: Diagram showing that myocardial remodelling is progressive and that changes such as hypotrophy occur initially in response to an initial insult such as exposure to anthracyclines, but that with further sequential stress the patient is unable to compensate and becomes symptomatic. (Adapted from Mann 1999)

CHF = congestive heart failure; LV = left ventricular

Figure 2: Normal heart cell (left) and heart cell in a patient receiving 200 mg/m² doxorubicin (right). The extent of cellular damage is such that this cell would be destined not to survive.

A mathematical prediction indicating that the likelihood of developing CHF is a function of the number of cycles of chemotherapy squared, divided by a correction factor of 16 for a dosage of 50 mg/m² per cycle, allowed the correct prediction of the incidence of cardiotoxicity in ongoing adjuvant trials to be ~1% (see Figure 3).
Early prevention of damage is paramount

The earlier anthracycline damage is prevented, the more successful that prevention will be, and the greater the possibilities for future therapies. Protection should be initiated prior to evidence of CHF, however, early interruption of treatment also risks treatment failure, so a balance is required. In other words, too sensitive detection of heart damage may impact oncological survival and cardiologists and oncologists need to keep this in mind.

Type II treatment-related cardiac dysfunction

While cardiac dysfunction associated with newer agents was initially thought to be similar to that of the anthracyclines, several aspects did not fit with that model, and a variant form of cardiac dysfunction was ultimately defined.

Trastuzumab

The cardiac effects seen with trastuzumab were clearly not the same as those observed with anthracyclines. Trastuzumab seems to cause cellular dysfunction, but does not cause typical anthracycline-like biopacy changes, is not cumulative and the injury is predominantly reversible. Dr Ewer first identified this phenomenon in treating a patient with metastatic breast cancer who had developed a LVEF in the 30s while on trastuzumab, and in whom the agent had been discontinued. She subsequently requested re-initiation of the agent and was granted this on compassionate grounds. Reinstigation of the agent did not cause CHF, her LVEF remained within the normal range, and she died approximately 18 months later as a result of her cancer. Subsequent investigations of 30 similar patients revealed the same findings, with such patients continuing on trastuzumab for years without cardiac sequelae.

Risk factors for this new type of toxicity include prior or concomitant anthracyclines or paclitaxel, age, previous cardiac disease or hypertension and a BMI >25 kg/m^2. Thus, while with such patients continuing on trastuzumab for years without cardiac sequelae.

Is the timing of trastuzumab important?

Examination of the data from several trials suggested that concomitant use of anthracyclines and trastuzumab produced much more severe effects than when the application of trastuzumab was delayed by approximately 30 (incidence of CHF 1.9-3.8%) or 90 days (0.6%) (see Figure 4). In the Finland Herceptin (FinHer) Study, trastuzumab preceded the anthracycline and no CHF was reported. *European agency for evaluation of medicinal products EMCA/CPMP 1696/01

In the BCIRG006 trial, in the absence of anthracycline use (within the docetaxel + carboplatin + trastuzumab arm) the incidence of grade 3 or 4 CHF was 0.4%, with a decreased ejection fraction of >10% in 8.6% of patients.† If trastuzumab is used sequentially more than 90 days after use of anthracycline the incidence of CHF is also very low (0.6% HERA). This provides evidence that if one waits long enough after anthracycline therapy, trastuzumab does not cause any significant additional damage.

Why, if Type II cardiac damage is reversible, do some patients not recover?

It appears that the Type II agent interferes with cellular repair of vulnerable cells that might have otherwise recovered and results in a greater overall injury (see Figure 5). The greater the underlying injury, the more vulnerable the heart, the smaller the cardiac reserves, and the more likely it is that the Type II agent will augment the Type I injury. Taken in isolation, the Type II agent causes reversible injury, but when additional myocardial stresses are imposed, additional cellular death may occur. Despite this finding, the low level of risk is reflected through the paucity of deaths seen in the trastuzumab adjuvant trials. In the 10 000 women who have received trastuzumab in such trials, only one death appears to have occurred.

Is time to trastuzumab important?

In most patients, the effects of trastuzumab are highly reversible and rechallenge does not appear to induce further damage (see Figure 6).

Long-term effects

It is unclear at this point what the long-term implications for Type I, but as yet patients have
not been followed for long enough to know what will happen over decades. Will cardiac treatment have the same impact as it does in Type I toxicity and, if it is beneficial, how long should treatment be continued?

Guidelines for use of trastuzumab

Clinical guidelines developed by an international group of cardiologists and oncologists for initiating adjuvant trastuzumab, divided patients into three groups: those with an LVEF ≥50% in which there are no restrictions on chemotherapy from a cardiac safety perspective (although trastuzumab should not be given concurrently with anthracyclines), those with an LVEF of 40–50% in whom trastuzumab monotherapy following all chemotherapy or with non-anthracycline-containing chemotherapy should be considered, and patients with an LVEF <40% in which treatment options should be at the discretion of the clinician balancing the risk of cardiac toxicity versus the risk of under-treatment of the tumour. All patients should be regularly monitored after completion of treatment.

Patients with an asymptomatic decline in LVEF (≥15% or ≥10% and below the lower limit of normal [50%]) during adjuvant trastuzumab are considered in two groups. Those in whom the LVEF is 40–50% should continue on trastuzumab with monthly LVEF monitoring, whereas those with an LVEF <40% should be removed from trastuzumab treatment and a cardiologist consulted. If LVEF recovers to ≥40% treatment may be reinitiated with cardiac support at the discretion of the cardiologist (see Figure 7).

Patients with an asymptomatic decline in LVEF (≥15% or ≥10% and below the lower limit of normal [50%]) during adjuvant trastuzumab are considered in two groups. Those in whom the LVEF is 40–50% should continue on trastuzumab with monthly LVEF monitoring, whereas those with an LVEF <40% should be removed from trastuzumab treatment and a cardiologist consulted. If LVEF recovers to ≥40% treatment may be reinitiated with cardiac support at the discretion of the cardiologist (see Figure 7).

Take home messages

Anthracycline toxicity;
- Is cumulative dose related
- Can be mitigated
- Probably starts at first administration
- Causes characteristic biopsy changes
- Results in cell death
- Can lead to fatal cardiac damage
- Can cause reversible early damage

Type II cardiotoxicity is different from Type I in that;
- It is reversible
- Typical anthracycline biopsy findings are absent
- There is no cumulative dosage phenomenon
- There is a paucity of cardiac deaths in adjuvant trials

References

6. Joensuu H et al. Fluorouracil, epirubicin, and cyclophosphamide with either docetaxel or vinorelbine, with or without trastuzumab should be reconsidered only if compelling reasons require it and with cardiac support at the discretion of the cardiologist (see Figure 7).

Figure 8: Algorithm for the management of asymptomatic cardiac events during treatment with trastuzumab.

In conclusion

There are two types of chemotherapy-related cardiac dysfunction. Anthracycline-associated cardiotoxicity and trastuzumab-associated cardiotoxicity are qualitatively different. Anthracyclines are associated with acute and chronic events with early destruction of cardiac myocytes and compensation followed by decompensation in a small number of patients. Better tools are needed for early detection of cardiac toxicity and improving cardiac outcomes. Clearer indications are required for the use of anthracycline and non-anthracycline regimens. Also needed are better imaging modalities and biologic markers for early recognition of dysfunction, and clear guidelines on starting, holding, stopping and post-treatment surveillance.

Figure 7: Algorithm for the management of asymptomatic decreases in left ventricular ejection fraction (LVEF) during treatment with adjuvant trastuzumab.

In patients with symptomatic cardiac events, treatment for patients with New York Heart Association (NYHA) functional class II mild symptomatic disease should follow the asymptomatic algorithm (see Figure 7). In patients with NYHA class III/IV severe symptomatic disease not due to other causes, trastuzumab should be halted and the patient monitored in consultation with a cardiologist (see Figure 8).

Publication of this article was paid for by Roche Products (NZ) Limited. Dr Michael S Ewer accepted financial support from Roche Products to present at this meeting. The content or opinions expressed in this publication may not reflect the views of Roche Products. Treatment decisions based on these data are the full responsibility of the prescribing physician. Before prescribing any of the medicines mentioned in this publication please review the data sheets available at www.medsafe.govt.nz.

© 2011 RESEARCH REVIEW